library(dplyr)
library(tidyr)
library(purrr)
library(ggplot2)
library(myPackage)
data("unemp")
<- unemp %>%
unemp ::clean_names() %>%
janitorfilter(level == "Commune")
R and Python
This is a simple quarto document
The data that was loaded and cleaned from R can be accessed from Python using r.unemp
:
import pandas as pd
= pd.DataFrame(r.unemp)
unemp_pd unemp_pd.head
<bound method NDFrame.head of year place_name ... active_population unemployment_rate_in_percent
0 2013.0 Dippach ... 1817.0 6.274078
1 2013.0 Garnich ... 869.0 2.876870
2 2013.0 Hobscheid ... 1505.0 4.916944
3 2013.0 Kaerjeng ... 4355.0 5.993111
4 2013.0 Kehlen ... 2244.0 4.367201
.. ... ... ... ... ...
310 2015.0 Mondorf-les-Bains ... 2083.0 8.305329
311 2015.0 Remich ... 1550.0 7.741935
312 2015.0 Schengen ... 2173.0 3.819604
313 2015.0 Stadtbredimus ... 891.0 5.723906
314 2015.0 Waldbredimus ... 460.0 4.347826
[315 rows x 9 columns]>